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Experiments on phase and generalized synchronization of two coupled, nonidentical chaotic electrochemical
oscillations are presented. We adapt measures of characterizing synchronization of a non-phase-coherent cha-
otic behavior and compare its properties and physicochemical mechanism to those of a phase-coherent behav-
ior. Phase synchronization sets in along with the onset of generalized synchronization for the non-phase-
coherent oscillations in contrast to phase-coherent oscillations in which the phase synchronization usually
occurs at a weaker coupling strength.
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Synchronization of coupled chaotically oscillating sys-
tems has received considerable recent interestf1g. Most stud-
ies are done with phase-coherent oscillations in which phase
and amplitude are easily defined and in which the variance of
instantaneous periods is small yielding a relatively narrow
peak in the Fourier transformf2g. In such systems phase
synchronizationsbounded phase differencef1gd occurs at
much smaller coupling strengthsf3g than identicalf4g or
generalized synchronizationscontinuous functional relation-
ship between attractorsd f5g. There are many experimental
examples of coupling and forcing of phase-coherent chaotic
systems in physicsf6g, chemistryf7g, and biologyf8,9g.

However, many systems are non-phase-coherent and a
principal frequency is not easily defined; they exhibit higher
complexity and can have more than one characteristic time
scalef10g. Examples are seen in lasersf11g, fluid flow f12g,
and chemical oscillationsf13g. Multiple time scales are in-
herent in physiologic dynamicsf14g. Non-phase-coherent os-
cillations can be a sign of dysfunction. Highly irregular os-
cillations with a broad power spectrum have been reported
for spontaneously hypertensive ratsf15g. Non-phase-
coherent systems impose two challenges. First, the defini-
tions of instantaneous phase and amplitude are not straight-
forward; several approaches have been proposed using
wavelets f11,15,16g, an external nonlinear locking device
f13g, or a method based on curvature of the trajectory in state
space f10g. Second, the synchronization differs from the
phase-coherent case; theoretical and simulation studies have
shown that phase and generalized synchronization can both
occur at strong coupling strengths in systems with non-
phase-coherent attractorsf10g, in systems with large hetero-
geneitiesf17g, or in the coupling of disparate oscillatorsf18g.

In this paper we compare synchronization of coupled non-
phase-coherent and phase-coherent chaotic systems using
two laboratory model systems from electrochemistry. The
first is iron electrodissolution which exhibits bistability, pe-
riodic oscillations, and chaos depending on parameters such
as applied potential, external resistance, and rate of mass
transfer to the surfacef19g. In the parameter range consid-
ered in this paper the electrodissolution undergoes complex
chaotic behavior for which standard methods of phase defi-
nitions fail. Phases of the oscillations are calculated with a
method based on trajectory curvaturef10g, and a measure of
phase synchronizationf9g is obtained as a function of the

coupling strength. Generalized synchronization is quantified
with a test of functional relationship between the two
coupled systems using an algorithm based on a method of
false neighborsf20g. The coupling strength at which phase
and generalized synchronization occurs is determined and
compared to results obtained with the coherent chaotic elec-
trodissolution of nickelf7g.

A standard three-compartment electrochemical cell con-
sisting of two iron working electrodess1-mm diameter each
with 2-mm spacingd, a Hg/Hg2SO4/K2SO4 reference elec-
trode, and a Pt mesh counter-electrode was used.sA sche-
matic of the experimental setup can be found in Ref.f7g.d
The applied potentialsVd of both electrodes was held at the
same value. The electrodes were connected to the poten-
tiostat through two individual parallel resistorssRindd and
through one series collective resistorsRcolld which furnishes a
global coupling of strength«=Rcoll /Rtot, where Rtot=Rcoll
+Rind/2 is kept constant. For«=0, the external resistance
furnishes no additional coupling; for«=1, maximal external
coupling is achievedf7g.

Both relatively slow and fast cycles are seen in the current
time series and the reconstructed attractor shows no obvious
center of rotation as shown in Figs. 1sad and 1sbd, respec-
tively. The phaseffstdg can be defined using the derivative
of the Hilbert transformHstd of the currentistd

fstd = arctan
dHstd/dt

distd/dt
. s1d

Osipov et al. have previously proposed the use of a two-
dimensional phase space based on derivative component co-
ordinatesf10g. Although there is no unique center of rotation
in the phase space using the Hilbert transformf21g fFig.
1scdg, a unique center is found using the derivative of both
coordinatesfFig. 1sddg; thus Eq.s1d can be used for the defi-
nition of phase. The extent of phase coherence can also be
seen in the return times of the time series data. While for the
phase-coherent chaos of Ni electrodissolution the oscillations
have similar return timess±10%d fsee Fig. 2sadg, for the
non-phase-coherent chaos of iron dissolutionfsee Fig. 2sbdg
oscillations with very small and large periods occur. It is also
seen in the figure that this behavior is stationary; the large
changes are not due to drift but due to a dynamic process.
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sWe have also confirmed the stationarity of oscillations with
a wavelet-based methodf22g; the wavelet analysis shows
only small fluctuations in characteristic frequencies but no
long-term driftd.

Without added couplings«=0d the two-electrode results
are shown in Fig. 3. The current of electrode 1 vs electrode 2
fFig. 3sadg does not show any obvious correlation. Phases are
obtained with Eq.s1d and phase differences defined as
Dfstd=f1std−f2std. The magnitude of phase differences
tends to increase with timefsee Fig. 3sbdg; however, large
fluctuations from a straight line occur due to the strong non-
phase-coherent feature of the chaotic oscillations.sThese
fluctuations are much smaller for the phase-coherent chaotic
Ni electrodissolutionf7g.d The histogram of the cyclic phase
differencessDf mod 2pd fFig. 3scdg is flat, indicating no fa-
vored phase difference and no significant inherent coupling
at «=0 through the electrolyte. A synchronization indexs
can be used to quantitatively characterize the extent of phase
synchronizationf9g; the value ofs expresses the sharpness
of the maximum in the cyclic phase difference distribution
and is obtained as

s = sSmax− Sd/Smax, s2d

whereS is the Shannon entropy of the cyclic phase differ-
ence distributionsS=−oi=1

M pi ln pi, M is the number of bins
in the histogram of cyclic phase differences in Fig. 3scd, pi is
the fraction of data points in theith bind, and Smax is the
maximum entropysflat distributiond. s takes on values from
0 to 1 as the distribution changes from flat to a delta func-
tion. For «=0 in Fig. 3scd, s=0.008.

Generalized synchronization can be characterized with a
quantity that expresses a continuous functional relationship
between the attractors of the two systemsf5g. Continuity was
difficult to prove seven for two identical systemsd; however,
a robust algorithm based on false nearest neighbors has been
proposed to characterize functional relationships between
signalsf20g. The method was developed to determine opti-
mal embedding dimension and time delay. Nevertheless, as
we shall see below, it provides an efficient way to character-
ize generalized synchronization as well. At any timet* the
phase points of electrode one and two arex1st*d andx2st*d.
The nearest neighbors of these two points,x1st1d andx2st2d,
respectively, are determinedswith the software package
OPENTSTOOLf23gd. Functional relationships are assumed to
exist if both ux2st*d−x2st1du,d and ux1st*d−x1st2du,d are
fulfilled, whered=0.7 mA. The reconstruction of the attrac-
tors was done using the method of time delays with the cur-
rent fistdg signal of the electrodes; reconstruction parameters
stime delay, t=0.015 s and embedding dimension,m=4d
were determined in such a way to avoid false neighborsf20g.
The functional relationship between the electrodes is charac-
terized by the fraction of phase pointsP that passes the false
neighbor test. An example is shown in Figs. 3sdd and 3sed.
The large distances between the phase points att* scirclesd
and att1 andt2 strianglesd, respectively, show that there is no
functional relationship between the two phase points att
= t* . The analysis of the whole time series at«=0 givesP

FIG. 1. Dynamics of a single electrode.sad Time series of the
current.sbd Attractor using time-delay coordinates.scd Phase space
using the Hilbert transform.sdd Phase space using the derivative of
the Hilbert transform.sBlack circle at the origin denotes the center
of rotation.d

FIG. 2. Time series of dimensionless return times,Tj = tj / ktjl,
wheretj is the time between two maxima in current time series.sad
Ni dissolution with phase coherent chaosstime series data taken
from Ref. f7gd. sbd Iron dissolution with non-phase-coherent chaos
sconditions are given in Fig. 1d.

FIG. 3. Two non-phase-coherent chaotic systems without added
coupling s«=0, V=−0.321 Vd. sad Current of electrode 2 vs elec-
trode 1.sbd Phase difference vs time.scd Histogram of cyclic phase
differencesDf mod 2p modulated intof−p ,pgd. sdd andsed Recon-
structed attractors of the electrodes using time-delay coordinates.
The circles represent phase points at an arbitrary time; triangles
represent nearest-neighbor image points.
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=0.004, i.e., only a small fractions0.4%d of the phase points
passes the false neighbor test.

Now we consider the addition of fairly strong coupling
s«=0.6, Fig. 4d. With this added coupling there is a remark-
able change in the synchronization properties of the oscilla-
tions. Although identical synchronizationscorresponding to
the diagonal lined in the i1std vs i2std plot fFig. 4sadg is not
present, there is correlation between the currents of the elec-
trodes. The phase differencesfFig. 4sbdg are nearly constant
with some phase slipssthese are related to sharp peaks in
time series for which state space reconstruction is inaccu-
rated. The histogram of cyclic phase differencesfFig. 4scdg
has a maximum near zero; antiphase oscillations are practi-
cally not observed, i.e., the probabilities at −p andp differ-
ences are almost zero. The synchronization index has a large
values=0.412; our previous studies showed that phase syn-
chronization is established whens.0.1−0.2f7g. Thus, we
see that the phases of the oscillations are correlated and at
«=0.6 phase synchronization has set in.

The phase points of the attractors shown in Figs. 4sdd and
4sed pass the nearest-neighbor test. Note that the correspond-
ing phase pointssshown in triangles and circlesd reside on
different parts of the two attractors; such a mapping is in-
dicative of generalized synchronization. The analysis gave
P=0.456 showing that about half of the phase points pass the
false neighbor test.

The synchronization indexs and the fraction of data
points that pass the neighbor testssPd are shown as a func-
tion of the coupling strength in Figs. 5sad and 5sbd. The fig-
ures show a similar trend with a large increase in the values
of s andP between«=0.4 and 0.6.sThere is small increase
of these quantities for«,0.4.d These results imply that
phase and generalized synchronization occur in a parallel
way in the system as the coupling strength is varied.

Similar experiments with two chaotic systems with vary-
ing coupling strength were carried out with nickel electrodis-
solution f7g. In this system the chaotic attractor is phase

coherent and phase synchronization was previously shown to
occur at«=0.06. In Figs. 5scd and 5sdd s andP are shown as
a function of coupling strength. Phase synchronization sets in
at «=0.06 at which coupling strengths increases consider-
ably. Generalized synchronization sets in at about«=0.5 as
shown by the large increase ofP. Thus, for phase-coherent
chaotic oscillations, phase and generalized synchronization
are distinct processes occurring at weak and strong coupling
strength, respectively.

Depending on the coherence of the chaotic attractor three
types of transitions have been proposed—from unsynchro-
nized to both phase and generalized synchronized statesf10g.
For phase-coherent attractors the zero Lyapunov exponent
sLEd is associated with the phase dynamics and phase syn-
chronization occurs at weak coupling shortly after the zero
LE becomes negative and generalized synchronization oc-
curs at the strong correlation of amplitudes at large coupling;
apparently, the transition seen in Ni electrodissolution be-
longs to this category. For chaotic attractors with intermedi-
ate phase diffusion the transition takes place via an interior
crisis. For strongly non-phase-coherent attractors phase syn-
chronization is a manifestation of generalized synchroniza-
tion and phase synchronization occurs only after one of the
positive LE passes to negative values, i.e., transition to gen-
eralized synchronization. In this case phase locking is pos-
sible only with strong correlations of the amplitudes. Iron
electrodissolution was shown to fall into this category; the
measures for phase and generalized synchronization fol-
lowed the same trend of variations.

Although detailed differential equation models of chaotic

FIG. 4. Two non-phase-coherent chaotic systems with added
couplings«=0.6,V=−0.300 Vd. sad Current of electrode 2 vs elec-
trode 1.sbd Phase difference vs time.scd Histogram of cyclic phase
differencesDf mod 2p modulated intof−p ,pgd. sdd andsed Recon-
structed attractors of the electrodes using time-delay coordinates.
The circles represent phase points at an arbitrary time; triangles
represent nearest-neighbor image points.

FIG. 5. Phase and generalized synchronization of non-phase-
coherent and phase-coherent systems. Left column: a non-phase-
coherent system in iron electrodissolution. Error bars indicate stan-
dard deviation of data obtained in nine experiments for −0.36 V
øVø−0.18 V. sad The synchronization index as a function of cou-
pling strength.sbd The fraction of phase points passing the nearest-
neighbor test vs coupling strength. Right column: the phase-
coherent chaotic system of Ni dissolution.scd The synchronization
index as a function of coupling strength.sdd The fraction of phase
points passing the nearest-neighbor test vs coupling strengthsm
=3, t=0.1 s,d=0.01 mAd.
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nickel and iron oscillations are not available, the general
mechanism for the development of oscillations is known.
Chaotic nickel dissolution with a phase coherent attractor
can develop through period-doubling bifurcations and the
system can be modeled with three variables: potential, and
NiO and NiOH surface coveragesf24g. However, to capture
the basic dynamical features of iron dissolution at least four
variables are requiredf25g; one of them is a slowly varying
salt layer thickness. It is likely that this slow variable con-
tributes to the large phase incoherent character of the oscil-
lations.

Two main routes to phase and generalized synchroniza-
tion have been confirmed in laboratory experiments with

electrochemical systems. Depending on the phase-coherent
features, phase and generalized synchronization can be inde-
pendent or highly correlated processes. The robustness of the
analysis method applied here can be useful for characterizing
other physical, chemical, and biological systems that are
composed of oscillations with different degrees of coherence.
For example, in an analysis of rat electroencephalographic
signalsf26g measures of phase and generalized synchroniza-
tion exhibited similar trends that imply underlying non-
phase-coherent dynamics.

This work was supported by the National Science Foun-
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